Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 13(4): e12437, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594787

RESUMO

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is characterised by an uncontrolled inflammatory response, and current treatment strategies have limited efficacy. Although the protective effect of M2-like macrophages (M2φ) and their extracellular vesicles (EVs) has been well-documented in other inflammatory diseases, the role of M2φ-derived EVs (M2φ-EVs) in the pathogenesis of ALI/ARDS remains poorly understood. The present study utilised a mouse model of lipopolysaccharide-induced ALI to first demonstrate a decrease in endogenous M2-like alveolar macrophage-derived EVs. And then, intratracheal instillation of exogenous M2φ-EVs from the mouse alveolar macrophage cell line (MH-S) primarily led to a take up by alveolar macrophages, resulting in reduced lung inflammation and injury. Mechanistically, the M2φ-EVs effectively suppressed the pyroptosis of alveolar macrophages and inhibited the release of excessive cytokines such as IL-6, TNF-α and IL-1ß both in vivo and in vitro, which were closely related to NF-κB/NLRP3 signalling pathway inhibition. Of note, the protective effect of M2φ-EVs was partly mediated by miR-709, as evidenced by the inhibition of miR-709 expression in M2φ-EVs mitigated their protective effect against lipopolysaccharide-induced ALI in mice. In addition, we found that the expression of miR-709 in EVs derived from bronchoalveolar lavage fluid was correlated negatively with disease severity in ARDS patients, indicating its potential as a marker for ARDS severity. Altogether, our study revealed that M2φ-EVs played a protective role in the pathogenesis of ALI/ARDS, partly mediated by miR-709, offering a potential strategy for assessing disease severity and treating ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , MicroRNAs , Síndrome do Desconforto Respiratório , Humanos , Camundongos , Animais , Lipopolissacarídeos , Vesículas Extracelulares/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Macrófagos/metabolismo , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/metabolismo , MicroRNAs/metabolismo
2.
J Extracell Vesicles ; 13(4): e12426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532609

RESUMO

Besides participating in diverse pathological and physiological processes, extracellular vesicles (EVs) are also excellent drug-delivery vehicles. However, clinical drugs modulating EV levels are still lacking. Here, we show that proton pump inhibitors (PPIs) reduce EVs by enhancing macropinocytosis-mediated EV uptake. PPIs accelerate intestinal cell endocytosis of autocrine immunosuppressive EVs through macropinocytosis, thereby aggravating inflammatory bowel disease. PPI-induced macropinocytosis facilitates the clearance of immunosuppressive EVs from tumour cells, improving antitumor immunity. PPI-induced macropinocytosis also increases doxorubicin and antisense oligonucleotides of microRNA-155 delivery efficiency by EVs, leading to enhanced therapeutic effects of drug-loaded EVs on tumours and acute liver failure. Mechanistically, PPIs reduce cytosolic pH, promote ATP6V1A (v-ATPase subunit) disassembly from the vacuolar membrane and enhance the assembly of plasma membrane v-ATPases, thereby inducing macropinocytosis. Altogether, our results reveal a mechanism for macropinocytic regulation and PPIs as potential modulators of EV levels, thus regulating their functions.


Assuntos
Vesículas Extracelulares , Inibidores da Bomba de Prótons , Endocitose , Pinocitose , Adenosina Trifosfatases
3.
Theranostics ; 14(3): 1010-1028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250037

RESUMO

Background: CD93 reportedly facilitates tumor angiogenesis. However, whether CD93 regulates antitumor immunity remains undeciphered. Methods: Lung tumor tissues, malignant pleural effusions (MPEs) were obtained from lung cancer patients. Blood was obtained from healthy volunteers and lung cancer patients with anti-PD-1 therapy. Furthermore, p53fl/flLSL-KrasG12D, Ccr7-/-, Cd93-/- mice and CD11c-DTR mice were generated. Specifically, EM, NTA and western blotting were utilized to identify Tumor extracellular vesicles (TEVs). EV labeling, detection of EV uptake in vitro and in vivo, degradation of EV proteins and RNAs were performed to detect the role of TEVs in tumor progression. Pleural mesothelial cells (pMCs) were isolated to investigate related signaling pathways. Recombinant proteins and antibodies were generated to test which antibody was the most effective one to increase CCL21a in p-pMCs. RNA-Seq, MiRNA array, luciferase reporter assay, endothelial tube formation assay, protein labeling and detection, transfection of siRNAs and the miRNA mimic and inhibitor, chemotaxis assay, immunohistochemical staining, flow cytometry, Real-time PCR, and ELISA experiments were performed. Results: We show that CD93 of pMCs reduced lung tumor migration of dendritic cells by preventing pMCs from secreting CCL21, thereby suppressing systemic anti-lung tumor T-cell responses. TEV-derived miR-5110 promotes CCL21 secretion by downregulating pMC CD93, whereas C1q, increasing in tumor individuals, suppresses CD93-mediated CCL21 secretion. CD93-blocking antibodies (anti-CD93) inhibit lung tumor growth better than VEGF receptor-blocking antibodies because anti-CD93 inhibit tumor angiogenesis and promote CCL21 secretion from pMCs. Anti-CD93 also overcome lung tumor resistance to anti-PD-1 therapy. Furthermore, lung cancer patients with higher serum EV-derived miR-5193 (human miR-5110 homolog) are more sensitive to anti-PD-1 therapy, while patients with higher serum C1q are less sensitive, consistent with their regulatory functions on CD93. Conclusions: Our study identifies a crucial role of CD93 in controlling anti-lung tumor immunity and suggests a promising approach for lung tumor therapy.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Receptores de Complemento , Animais , Humanos , Camundongos , Anticorpos , Anticorpos Bloqueadores , Complemento C1q , Imunidade , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Receptores de Complemento/genética
4.
Mov Disord ; 39(1): 40-52, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37798868

RESUMO

BACKGROUND: Progressive spreading of α-synuclein via gut-brain axis has been hypothesized in the pathogenesis of Parkinson's disease (PD). However, the source of seeding-capable α-synuclein in the gastrointestinal tract (GIT) has not been fully investigated. Additionally, the mechanism by which the GIT microbiome contributes to PD pathogenesis remains to be characterized. OBJECTIVES: We aimed to investigate whether blood-derived α-synuclein might contribute to PD pathology via a gut-driven pathway and involve GIT microbiota. METHODS: The GIT expression of α-synuclein and the transmission of extracellular vesicles (EVs) derived from erythrocytes/red blood cells (RBCs), with their cargo α-synuclein, to the GIT were explored with various methods, including radioactive labeling of RBC-EVs and direct analysis of the transfer of α-synuclein protein. The potential role of microbiota on the EVs transmission was further investigated by administering butyrate, the short-chain fatty acids produced by gut microbiota and studying mice with different α-synuclein genotypes. RESULTS: This study demonstrated that RBC-EVs can effectively transport α-synuclein to the GIT in a region-dependent manner, along with variations closely associated with regional differences in the expression of gut-vascular barrier markers. The investigation further revealed that the infiltration of α-synuclein into the GIT was influenced significantly by butyrate and α-synuclein genotypes, which may also affect the GIT microbiome directly. CONCLUSION: By demonstrating the transportation of α-synuclein through RBC-EVs to the GIT, and its potential association with gut-vascular barrier markers and gut microbiome, this work highlights a potential mechanism by which RBC α-synuclein may impact PD initiation and/or progression. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Animais , Camundongos , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Eixo Encéfalo-Intestino , Eritrócitos/metabolismo , Eritrócitos/patologia , Butiratos
5.
Appl Opt ; 62(23): 6131-6139, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37707080

RESUMO

In this paper, an optical image encryption method is proposed based on structured light illumination and a diffractive neural network (DNN), which can realize conversion between different images. With the use of the structured phase mask (SPM) in the iterative phase retrieval algorithm, a plaintext image is encoded into a DNN composed of multiple phase-only masks (POMs) and ciphertext. It is worth noting that ciphertext is a visible image such that the conversion of one image to another is achieved, leading to high concealment of the proposed optical image encryption method. In addition, the wavelength of the illuminating light, all Fresnel diffraction distances, the optical parameters of the adopted SPM such as focal length and topological charge number, as well as all POMs in the DNN are all considered as security keys in the decryption process, contributing to a large key space and high level of security. Numerical simulations are performed to demonstrate the feasibility of the proposed method, and simulation results show that it exhibits high feasibility and safety as well as strong robustness.

6.
Cell Metab ; 35(8): 1281-1282, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37557069

RESUMO

In this Q&A, Cell Metabolism's Scientific Editor Rosalind Mott talks to Prof. Zhijian Cai about his paper "UBE2M-mediated neddylation of TRIM21 regulates obesity-induced inflammation and metabolic disorders" and his experience with publishing through Cell Press Community Review.


Assuntos
Editoração
7.
Cell Metab ; 35(8): 1390-1405.e8, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343564

RESUMO

Inflammation is closely associated with obesity and related metabolic disorders. However, its origin during obesity is largely unknown. Here, we report that ubiquitin-conjugating enzyme E2M (UBE2M) is critical to obesity-related inflammation induced by macrophages. In mice with UBE2M-deficient macrophages, obesity, insulin resistance, and hepatic steatosis induced by a high-fat diet are greatly alleviated, an effect related to the decreased proinflammatory activity of macrophages due to reduced IL-1ß production. Mechanistically, UBE2M deficiency inhibits the neddylation of E3 ubiquitin ligase TRIM21 on K129/134, leading to reduced recruitment and ubiquitination-mediated degradation of E3 ubiquitin ligase VHL. Subsequently, VHL reduces HIF-1α-induced IL-1ß production by degrading HIF-1α. Targeting macrophage TRIM21 with Trim21 antisense oligonucleotide-loaded red blood cell extracellular vesicles effectively inhibits obesity-induced inflammation and related metabolic disorders. Thus, our results demonstrate that macrophage UBE2M is essential for obesity-induced inflammation and that TRIM21 is a proof-of-concept target for treating obesity and associated metabolic diseases.


Assuntos
Doenças Metabólicas , Ubiquitina-Proteína Ligases , Camundongos , Animais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Obesidade/complicações , Obesidade/metabolismo , Inflamação , Doenças Metabólicas/etiologia
8.
Theranostics ; 13(6): 1892-1905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064870

RESUMO

Regulatory T cells (Tregs) are critical for generating and maintaining peripheral tolerance. Treg-based immunotherapy is valuable for the clinical management of diseases resulting from dysregulation of immune tolerance. However, the lack of potency is a potential limitation of Treg therapy. In addition, CD69 positive-Treg (CD69+ Treg) represent a newly identified subset of Tregs with potent immune suppressive capability. Methods: Foxp3 YFP-Cre CD69 fl/fl and CD4 Cre CD69 fl/fl mice were generated to determine the relevance of CD69 to Treg. Chromatin Immunoprecipitation Assay (ChIP) and luciferase Assay were performed to detect the regulation of CD69 transcription by heat shock transcription factor 1(HSF1). Gene expression was measured by western blotting and qRT-PCR. The differentiation of naive T cells to CD69+Foxp3+ iTregs was determined by flow cytometry. The immunosuppressive ability of Tregs was analyzed by ELISA and flow cytometry. Colon inflammation in mice was reflected by changes in body weight and colon length, the disease activity index (DAI), and H&E staining of colon tissues. Results: Induced Tregs (iTregs) from CD4 Cre CD69 fl/fl mice failed to alleviate colitis. The transcription factor HSF1 interacted with the promoter of the CD69 gene to prompt its transcription during Treg differentiation. Genetic and chemical inhibition of HSF1 impaired CD69+ Treg differentiation and promoted the pathogenesis of colitis in mice. In contrast, HSF1 protein stabilized by inhibiting its proteasomal degradation promoted CD69+ Treg differentiation and alleviated colitis in mice. Moreover, adoptive transfer of iTregs with HSF1 stabilization by proteasome inhibitor (PSI) dramatically prevented the development of colitis in mice and was accompanied by decreased production of pro-inflammatory cytokines and reduced accumulation of pro-inflammatory lymphocytes in colitis tissue, whereas Tregs induced in the absence of PSI were less stable and ineffective in suppressing colitis. Conclusions: HSF1 promotes CD69+ Tregs differentiation by activating the CD69 transcription, which is critical for the immunosuppressive function of Tregs. Stabilization of HSF1 by PSIs results in the efficient generation of Tregs with high potency to treat colitis and probably other autoimmune diseases involving Tregs deficiency.


Assuntos
Colite , Linfócitos T Reguladores , Camundongos , Animais , Fatores de Transcrição de Choque Térmico/metabolismo , Colite/patologia , Diferenciação Celular , Fatores de Transcrição Forkhead/metabolismo , Camundongos Endogâmicos C57BL
9.
Front Immunol ; 14: 1024041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817436

RESUMO

Background: Coronavirus disease 2019 (COVID-19) and inflammatory bowel disease (IBD) are both caused by a disordered immune response and have direct and profound impacts on health care services. In this study, we implemented transcriptomic and single-cell analysis to detect common molecular and cellular intersections between COVID-19 and IBD that help understand the linkage of COVID-19 to the IBD patients. Methods: Four RNA-sequencing datasets (GSE147507, GSE126124, GSE9686 and GSE36807) from Gene Expression Omnibus (GEO) database are extracted to detect mutual differentially expressed genes (DEGs) for IBD patients with the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to find shared pathways, candidate drugs, hub genes and regulatory networks. Two single-cell RNA sequencing (scRNA-eq) datasets (GSE150728, PRJCA003980) are used to analyze the immune characteristics of hub genes and the proportion of immune cell types, so as to find common immune responses between COVID-19 and IBD. Results: A total of 121 common DEGs were identified among four RNA-seq datasets, and were all involved in the functional enrichment analysis related to inflammation and immune response. Transcription factors-DEGs interactions, miRNAs-DEGs coregulatory networks, and protein-drug interactions were identified based on these datasets. Protein-protein interactions (PPIs) was built and 59 hub genes were identified. Moreover, scRNA-seq of peripheral blood monocyte cells (PBMCs) from COVID-19 patients revealed a significant increase in the proportion of CD14+ monocytes, in which 38 of 59 hub genes were highly enriched. These genes, encoding inflammatory cytokines, were also highly expressed in inflammatory macrophages (IMacrophage) of intestinal tissues of IBD patients. Conclusions: We conclude that COVID-19 may promote the progression of IBD through cytokine storms. The candidate drugs and DEGs-regulated networks may suggest effective therapeutic methods for both COVID-19 and IBD.


Assuntos
COVID-19 , Doenças Inflamatórias Intestinais , MicroRNAs , Humanos , SARS-CoV-2 , Inflamação
10.
Cancer Immunol Immunother ; 72(6): 1803-1821, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36680568

RESUMO

Human Vγ9Vδ2 T cells have attracted considerable attention as novel alternative antigen-presenting cells (APCs) with the potential to replace dendritic cells in antitumor immunotherapy owing to their high proliferative capacity and low cost. However, the utility of γδ T cells as APCs to induce CD8+ T cell-mediated antitumor immune response, as well as the mechanism by which they perform APC functions, remains unexplored. In this study, we found that activated Vγ9Vδ2 T cells were capable of inducing robust CD8+ T cell responses in osteosarcoma cells. Activated γδ T cells also effectively suppressed osteosarcoma growth by priming CD8+ T cells in xenograft animal models. Mechanistically, we further revealed that activated γδ T cells exhibited increased HSP90 production, which fed back to upregulate MyD88, followed by JNK activation and a subsequent improvement in CCL5 secretion, leading to enhanced CD8+ T cell cross-priming. Thus, our study suggests that Vγ9Vδ2 T cells represent a promising alternative APC for the development of γδ T cell-based tumor immunotherapy.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Humanos , Apresentação de Antígeno , Células Apresentadoras de Antígenos , Antígenos , Linfócitos T CD8-Positivos , Ativação Linfocitária , Fator 88 de Diferenciação Mieloide , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , MAP Quinase Quinase 4/metabolismo
11.
Cell Rep ; 42(1): 112002, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36662617

RESUMO

Type I interferon (IFN-I) signaling is central to inducing antiviral innate immunity. However, the mechanisms for IFN-I signaling self-regulation are still largely unknown. Here, we report that RNA virus-infected macrophages with UBE2M deficiency produced decreased IFN-I expression in a RIG-I-dependent manner, causing an aggravated viral infection. Mechanistically, UBE2M inhibits RIG-I degradation by preventing the interaction of RIG-I and E3 ligase STUB1, resulting in antiviral IFN-I signaling activation. Simultaneously, IFN-I signaling-activated STAT1 facilitates the transcription of Trim21, leading to increased UBE2M degradation and blunted antiviral immunity. Translationally, oral administration of milk-derived extracellular vesicles containing RING domain-truncated TRIM21 (TRIM21-ΔRING) lacking E3 ligase activity efficiently transfers TRIM21-ΔRING into macrophages. TRIM21-ΔRING suppresses UBE2M degradation by competitively binding to UBE2M with TRIM21, thereby enhancing antiviral immunity. Overall, we reveal a negative feedback loop of IFN-I signaling and develop a reagent to improve innate immunity against RNA viruses.


Assuntos
Interferon Tipo I , Vírus de RNA , Antivirais , Retroalimentação , Imunidade Inata , Ubiquitina-Proteína Ligases/genética
12.
Heliyon ; 8(12): e11978, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36506352

RESUMO

Purpose: To investigate the clinical features and risk factors for methicillin-resistant Staphylococcus aureus (MRSA) pneumonia (MP) with secondary MRSA bloodstream infections (MRSA-BSI) (termed MP-BSI) compared with MP alone and to study the incidence of MP-BSI among patients with MP. Methods: This was a retrospective, single-center study with clinical data derived from previous medical records. The cases were divided into groups: MP alone and MP-BSI. The determination of independent risk factors for MP-BSI relied on logistic regression analysis. Additionally, the crude outcomes were compared. Results: A total of 435 patients with MP were recruited, with 18.9% (82/435) having MP-BSI. The median age was 62 (interquartile range, 51,72) years, and 74.5% of the patients were male. Multivariate analysis revealed that immunosuppression, community-acquired MP (CA-MP), time from initial to targeted antibiotic use, high Sequential Organ Failure Assessment (SOFA) score, increased respiratory rate, and elevated γ-GT level (all p < 0.05) were independent risk factors for MP-BSI, while targeted treatment with linezolid was a protective factor. Patients with MP-BSI had a longer duration of hospitalization (median days, 27.5 vs. 19, p = 0.001), a higher 28-day mortality rate (24.4% vs. 11.0%, p = 0.001), and a higher in-hospital mortality rate (26.8% vs. 14.7%, p = 0.009) than those with MP alone. Conclusion: Secondary MRSA-BSI among patients with MP is not rare. Immunosuppression, CA-MP, time from initial to targeted antibiotic use, high SOFA score, increased respiratory rate and elevated γ-GT level are all independent risk factors for MP-BSI; however, linezolid, as a targeted antibiotic, is a protective factor. Moreover, patients with MP may have worse clinical outcomes when they develop MRSA-BSI.

13.
Front Psychol ; 13: 1045187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506951

RESUMO

Improvements of the happiness of the rural population are an essential sign of the effectiveness of relative poverty governance. In the context of today's digital economy, assessing the relationship between digital literacy and the subjective happiness of rural low-income groups is of great practicality. Based on data from China Family Panel Studies, the effect of digital literacy on the subjective well-being of rural low-income groups was empirically tested. A significant happiness effect of digital literacy on rural low-income groups was found. Digital literacy promotes the subjective happiness of rural low-income groups through income increase and consumption growth effects. The observed happiness effect is heterogeneous among different characteristic groups, and digital literacy significantly positively impacts the subjective happiness of rural low-income groups. Decomposition of subjective happiness into life satisfaction and job satisfaction shows that digital literacy significantly positively affects the job and life satisfaction of rural low-income groups. This paper demonstrates that digital literacy induces a practical happiness effect. To further strengthen the subjective welfare effect of digital literacy in the construction of digital villages, the government should focus on cultivating digital literacy among low-income groups from the demand side. The construction of digital infrastructure should be actively promoted from the supply side.

14.
Nat Commun ; 13(1): 6951, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376293

RESUMO

Immune checkpoint blockade therapies targeting the PD-L1/PD-1 axis have demonstrated clear clinical benefits. Improved understanding of the underlying regulatory mechanisms might contribute new insights into immunotherapy. Here, we identify transmembrane and ubiquitin-like domain-containing protein 1 (TMUB1) as a modulator of PD-L1 post-translational modifications in tumor cells. Mechanistically, TMUB1 competes with HECT, UBA and WWE domain-containing protein 1 (HUWE1), a E3 ubiquitin ligase, to interact with PD-L1 and inhibit its polyubiquitination at K281 in the endoplasmic reticulum. Moreover, TMUB1 enhances PD-L1 N-glycosylation and stability by recruiting STT3A, thereby promoting PD-L1 maturation and tumor immune evasion. TMUB1 protein levels correlate with PD-L1 expression in human tumor tissue, with high expression being associated with poor patient survival rates. A synthetic peptide engineered to compete with TMUB1 significantly promotes antitumor immunity and suppresses tumor growth in mice. These findings identify TMUB1 as a promising immunotherapeutic target.


Assuntos
Antígeno B7-H1 , Neoplasias , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Glicosilação , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Evasão Tumoral , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
15.
Appl Opt ; 61(24): 7255-7264, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256347

RESUMO

A security-enhanced multiple-image encryption method is proposed based on quick response (QR) codes and modified double random phase encoding (DRPE) in the fractional Fourier transform (FrFT) domain in this paper, where each plaintext is first converted into QR code, and then each QR code is employed to generate the corresponding binary key for decryption with the help of random binary plaintext (RBP). Subsequently, the used RBP is encrypted into noise-like ciphertext by using the modified DRPE in the FrFT domain. In the modified DRPE method, the first random phase mask is activated by the initial FrFT with chaotic phase, and the wavelength of light and the fractional orders as well as the focal lengths of lenses are all used as digital keys to expand the key space. Moreover, the sensitivities of these digital keys are extremely high because the digital keys are closely mapped with the initial values of the chaotic system in the encryption process, which contributes to an extremely high security of the multiple-image encryption method. Furthermore, the high feasibility and strong robustness of the proposed security-enhanced multiple-image encryption method are also demonstrated by using computational simulations.

16.
Cell Mol Immunol ; 19(11): 1290-1301, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220994

RESUMO

PD-L1+ tumor-derived extracellular vesicles (TEVs) cause systemic immunosuppression and possibly resistance to anti-PD-L1 antibody (αPD-L1) blockade. However, whether and how PD-L1+ TEVs mediate αPD-L1 therapy resistance is unknown. Here, we show that PD-L1+ TEVs substantially decoy αPD-L1 and that TEV-bound αPD-L1 is more rapidly cleared by macrophages, causing insufficient blockade of tumor PD-L1 and subsequent αPD-L1 therapy resistance. Inhibition of endogenous production of TEVs by Rab27a or Coro1a knockout reverses αPD-L1 therapy resistance. Either an increased αPD-L1 dose or macrophage depletion mediated by the clinical drug pexidartinib abolishes αPD-L1 therapy resistance. Moreover, in the treatment cycle with the same total treatment dose of αPD-L1, high-dose and low-frequency treatment had better antitumor effects than low-dose and high-frequency treatment, induced stronger antitumor immune memory, and eliminated αPD-L1 therapy resistance. Notably, in humanized immune system mice with human xenograft tumors, both increased αPD-L1 dose and high-dose and low-frequency treatment enhanced the antitumor effects of αPD-L1. Furthermore, increased doses of αPD-L1 and αPD-1 had comparable antitumor effects, but αPD-L1 amplified fewer PD-1+ Treg cells, which are responsible for tumor hyperprogression. Altogether, our results reveal a TEV-mediated mechanism of αPD-L1-specific therapy resistance, thus providing promising strategies to improve αPD-L1 efficacy.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Camundongos , Animais , Antígeno B7-H1 , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Tolerância Imunológica , Macrófagos , Linhagem Celular Tumoral , Microambiente Tumoral
17.
Asian J Pharm Sci ; 17(3): 462-474, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35782327

RESUMO

Although chimeric antigen receptor-modified (CAR) T cell therapy has been successfully applied in the treatment of acute B lymphocytic leukemia, its effect on Burkitt lymphoma (BL) and chronic B lymphocytic leukemia (B-CLL) is unsatisfactory. Moreover, fatal side effects greatly impede CAR T cell application. Extracellular vesicles (EVs) are excellent carriers of therapeutic agents. Nevertheless, EVs mainly accumulate in the liver when administered without modification. As an envelope glycoprotein of Epstein-Barr viruses, gp350 can efficiently bind CD21 on B cells. Here, gp350 was directly anchored onto red blood cell EVs (RBC-EVs) via its transmembrane region combined with low-voltage electroporation. The results showed that gp350 could anchor to RBC-EVs with high efficiency and that the resulting gp350-anchored RBC-EVs (RBC-EVs/gp350Etp) exhibited increased targeting to CD21+ BL and B-CLL relative to RBC-EVs. After the loading of doxorubicin or fludarabine, RBC-EVs/gp350Etp had powerful cytotoxicity and therapeutic efficacy on CD21+ BL or B-CLL, respectively. Moreover, RBC-EVs/gp350Etp loaded with a drug did not exhibit any apparent systemic toxicity and specifically induced the apoptosis of tumor B cells but not normal B cells. Therefore, our findings indicate that drug-loaded RBC-EVs/gp350Etp may be adopted in the treatment of CD21+ B cell malignancies.

18.
Nat Commun ; 13(1): 3419, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701426

RESUMO

TGF-ß is essential for inducing systemic tumor immunosuppression; thus, blocking TGF-ß can greatly enhance antitumor immunity. However, there are still no effective TGF-ß inhibitors in clinical use. Here, we show that the clinically approved compound ursodeoxycholic acid (UDCA), by degrading TGF-ß, enhances antitumor immunity through restraining Treg cell differentiation and activation in tumor-bearing mice. Furthermore, UDCA synergizes with anti-PD-1 to enhance antitumor immunity and tumor-specific immune memory in tumor-bearing mice. UDCA phosphorylates TGF-ß at T282 site via TGR5-cAMP-PKA axis, causing increased binding of TGF-ß to carboxyl terminus of Hsc70-interacting protein (CHIP). Then, CHIP ubiquitinates TGF-ß at the K315 site, initiating p62-dependent autophagic sorting and subsequent degradation of TGF-ß. Notably, results of retrospective analysis shows that combination therapy with anti-PD-1 or anti-PD-L1 and UDCA has better efficacy in tumor patients than anti-PD-1 or anti-PD-L1 alone. Thus, our results show a mechanism for TGF-ß regulation and implicate UDCA as a potential TGF-ß inhibitor to enhance antitumor immunity.


Assuntos
Neoplasias , Fator de Crescimento Transformador beta , Animais , Linhagem Celular Tumoral , Humanos , Terapia de Imunossupressão , Camundongos , Neoplasias/tratamento farmacológico , Estudos Retrospectivos , Fator de Crescimento Transformador beta/metabolismo , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/uso terapêutico
19.
Mediators Inflamm ; 2022: 8457010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185385

RESUMO

Glibenclamide displays an anti-inflammatory response in various pulmonary diseases, but its exact role in lipopolysaccharide- (LPS-) induced acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) remains unknown. Herein, we aimed to explore the effect of glibenclamide in vivo and in vitro on the development of LPS-induced ALI in a mouse model. LPS stimulation resulted in increases in lung injury score, wet/dry ratio, and capillary permeability in lungs, as well as in total protein concentration, inflammatory cells, and inflammatory cytokines including IL-1ß, IL-18 in bronchoalveolar lavage fluid (BALF), and lung tissues, whereas glibenclamide treatment reduced these changes. Meanwhile, the increased proteins of NLRP3 and Caspase-1/p20 after LPS instillation in lungs were downregulated by glibenclamide. Similarly, in vitro experiments also found that glibenclamide administration inhibited the LPS-induced upregulations in cytokine secretions of IL-1ß and IL-18, as well as in the expression of components in NLRP3 inflammasome in mouse peritoneal macrophages. Of note, glibenclamide had no effect on the secretion of TNF-α in vivo nor in vitro, implicating that its anti-inflammatory effect is relatively specific to NLRP3 inflammasome. In conclusion, glibenclamide alleviates the development of LPS-induced ALI in a mouse model via inhibiting the NLRP3/Caspase-1/IL-1ß signaling pathway, which might provide a new strategy for the treatment of LPS-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Inflamassomos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Glibureto/farmacologia , Glibureto/uso terapêutico , Inflamassomos/metabolismo , Lipopolissacarídeos/toxicidade , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais
20.
J Neuroinflammation ; 19(1): 53, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193594

RESUMO

BACKGROUND: Immune system dysfunction, including higher levels of peripheral monocytes and inflammatory cytokines, is an important feature of Parkinson's disease (PD) pathogenesis, although the mechanism underlying the process remains to be investigated. In the central nervous system, it is well-known that α-synuclein (α-syn), a key protein involved in PD, activates microglia potently, and it is also reported that α-syn exists in the peripheral system, especially in erythrocytes or red blood cells (RBC) at exceedingly high concentration. The current study focused on the possibility that RBC-derived α-syn mediates the sensitization of peripheral monocytes in PD patients. METHODS: The hyperactivation of monocytes was assessed quantitatively by measuring mRNA levels of typical inflammatory cytokines (including IL-1ß, IL-6 and TNF-α) and protein levels of secreted inflammatory cytokines (including pro-inflammatory cytokines: IL-1ß, IL-6, TNF-α, IL-8, IFN-γ, IL-2, and IL-12p70 and anti-inflammatory cytokines: IL-4, IL-10, and IL-13). Western blot, nanoparticle tracking analysis and electron microscopy were used to characterize RBC-derived extracellular vesicles (RBC-EVs). Inhibitors of endocytosis and leucine-rich repeat kinase 2 (LRRK2), another key protein involved in PD, were used to investigate how these two factors mediated the process of monocyte sensitization by RBC-EVs. RESULTS: Increased inflammatory sensitization of monocytes was observed in PD patients and PD model mice. We found that α-syn-containing RBC-EVs isolated from PD model mice or free form oligomeric α-syn induced the inflammatory sensitization of THP-1 cells, and demonstrated that endocytosis was a requirement for this pathophysiological pathway. Furthermore, the hyperactivation of THP-1 cells induced by RBC-EVs was associated with increased LRRK2 production and kinase activity. The phenomenon of inflammatory sensitization of human monocytes and increased LRRK2 were also observed by the treatment of RBC-EVs isolated from PD patients. CONCLUSIONS: Our data provided new insight into how hyperactivation of monocytes occurs in PD patients, and identified the central role played by α-syn-containing RBC-EVs in this process.


Assuntos
Vesículas Extracelulares , Doença de Parkinson , Animais , Eritrócitos/metabolismo , Eritrócitos/patologia , Vesículas Extracelulares/metabolismo , Humanos , Camundongos , Monócitos/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...